metabelian, supersoluble, monomial
Aliases: C32⋊3Q32, C3⋊2Dic24, C6.15D24, C24.50D6, C12.12D12, Dic12.1S3, C8.7S32, C3⋊C16.S3, (C3×C6).12D8, C6.4(D4⋊S3), (C3×C12).27D4, C3⋊1(C3⋊Q32), C4.4(C3⋊D12), C2.7(C3⋊D24), C32⋊5Q16.2C2, C12.69(C3⋊D4), (C3×C24).12C22, (C3×Dic12).3C2, (C3×C3⋊C16).1C2, SmallGroup(288,199)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C32⋊3Q32
G = < a,b,c,d | a3=b3=c16=1, d2=c8, ab=ba, cac-1=a-1, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >
Subgroups: 258 in 57 conjugacy classes, 22 normal (all characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C32, Dic3, C12, C12, C16, Q16, C3×C6, C24, C24, Dic6, C3×Q8, Q32, C3×Dic3, C3⋊Dic3, C3×C12, C3⋊C16, C48, Dic12, Dic12, C3×Q16, C3×C24, C3×Dic6, C32⋊4Q8, Dic24, C3⋊Q32, C3×C3⋊C16, C3×Dic12, C32⋊5Q16, C32⋊3Q32
Quotients: C1, C2, C22, S3, D4, D6, D8, D12, C3⋊D4, Q32, S32, D24, D4⋊S3, C3⋊D12, Dic24, C3⋊Q32, C3⋊D24, C32⋊3Q32
(1 18 85)(2 86 19)(3 20 87)(4 88 21)(5 22 89)(6 90 23)(7 24 91)(8 92 25)(9 26 93)(10 94 27)(11 28 95)(12 96 29)(13 30 81)(14 82 31)(15 32 83)(16 84 17)(33 80 56)(34 57 65)(35 66 58)(36 59 67)(37 68 60)(38 61 69)(39 70 62)(40 63 71)(41 72 64)(42 49 73)(43 74 50)(44 51 75)(45 76 52)(46 53 77)(47 78 54)(48 55 79)
(1 85 18)(2 86 19)(3 87 20)(4 88 21)(5 89 22)(6 90 23)(7 91 24)(8 92 25)(9 93 26)(10 94 27)(11 95 28)(12 96 29)(13 81 30)(14 82 31)(15 83 32)(16 84 17)(33 56 80)(34 57 65)(35 58 66)(36 59 67)(37 60 68)(38 61 69)(39 62 70)(40 63 71)(41 64 72)(42 49 73)(43 50 74)(44 51 75)(45 52 76)(46 53 77)(47 54 78)(48 55 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 38 9 46)(2 37 10 45)(3 36 11 44)(4 35 12 43)(5 34 13 42)(6 33 14 41)(7 48 15 40)(8 47 16 39)(17 62 25 54)(18 61 26 53)(19 60 27 52)(20 59 28 51)(21 58 29 50)(22 57 30 49)(23 56 31 64)(24 55 32 63)(65 81 73 89)(66 96 74 88)(67 95 75 87)(68 94 76 86)(69 93 77 85)(70 92 78 84)(71 91 79 83)(72 90 80 82)
G:=sub<Sym(96)| (1,18,85)(2,86,19)(3,20,87)(4,88,21)(5,22,89)(6,90,23)(7,24,91)(8,92,25)(9,26,93)(10,94,27)(11,28,95)(12,96,29)(13,30,81)(14,82,31)(15,32,83)(16,84,17)(33,80,56)(34,57,65)(35,66,58)(36,59,67)(37,68,60)(38,61,69)(39,70,62)(40,63,71)(41,72,64)(42,49,73)(43,74,50)(44,51,75)(45,76,52)(46,53,77)(47,78,54)(48,55,79), (1,85,18)(2,86,19)(3,87,20)(4,88,21)(5,89,22)(6,90,23)(7,91,24)(8,92,25)(9,93,26)(10,94,27)(11,95,28)(12,96,29)(13,81,30)(14,82,31)(15,83,32)(16,84,17)(33,56,80)(34,57,65)(35,58,66)(36,59,67)(37,60,68)(38,61,69)(39,62,70)(40,63,71)(41,64,72)(42,49,73)(43,50,74)(44,51,75)(45,52,76)(46,53,77)(47,54,78)(48,55,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,38,9,46)(2,37,10,45)(3,36,11,44)(4,35,12,43)(5,34,13,42)(6,33,14,41)(7,48,15,40)(8,47,16,39)(17,62,25,54)(18,61,26,53)(19,60,27,52)(20,59,28,51)(21,58,29,50)(22,57,30,49)(23,56,31,64)(24,55,32,63)(65,81,73,89)(66,96,74,88)(67,95,75,87)(68,94,76,86)(69,93,77,85)(70,92,78,84)(71,91,79,83)(72,90,80,82)>;
G:=Group( (1,18,85)(2,86,19)(3,20,87)(4,88,21)(5,22,89)(6,90,23)(7,24,91)(8,92,25)(9,26,93)(10,94,27)(11,28,95)(12,96,29)(13,30,81)(14,82,31)(15,32,83)(16,84,17)(33,80,56)(34,57,65)(35,66,58)(36,59,67)(37,68,60)(38,61,69)(39,70,62)(40,63,71)(41,72,64)(42,49,73)(43,74,50)(44,51,75)(45,76,52)(46,53,77)(47,78,54)(48,55,79), (1,85,18)(2,86,19)(3,87,20)(4,88,21)(5,89,22)(6,90,23)(7,91,24)(8,92,25)(9,93,26)(10,94,27)(11,95,28)(12,96,29)(13,81,30)(14,82,31)(15,83,32)(16,84,17)(33,56,80)(34,57,65)(35,58,66)(36,59,67)(37,60,68)(38,61,69)(39,62,70)(40,63,71)(41,64,72)(42,49,73)(43,50,74)(44,51,75)(45,52,76)(46,53,77)(47,54,78)(48,55,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,38,9,46)(2,37,10,45)(3,36,11,44)(4,35,12,43)(5,34,13,42)(6,33,14,41)(7,48,15,40)(8,47,16,39)(17,62,25,54)(18,61,26,53)(19,60,27,52)(20,59,28,51)(21,58,29,50)(22,57,30,49)(23,56,31,64)(24,55,32,63)(65,81,73,89)(66,96,74,88)(67,95,75,87)(68,94,76,86)(69,93,77,85)(70,92,78,84)(71,91,79,83)(72,90,80,82) );
G=PermutationGroup([[(1,18,85),(2,86,19),(3,20,87),(4,88,21),(5,22,89),(6,90,23),(7,24,91),(8,92,25),(9,26,93),(10,94,27),(11,28,95),(12,96,29),(13,30,81),(14,82,31),(15,32,83),(16,84,17),(33,80,56),(34,57,65),(35,66,58),(36,59,67),(37,68,60),(38,61,69),(39,70,62),(40,63,71),(41,72,64),(42,49,73),(43,74,50),(44,51,75),(45,76,52),(46,53,77),(47,78,54),(48,55,79)], [(1,85,18),(2,86,19),(3,87,20),(4,88,21),(5,89,22),(6,90,23),(7,91,24),(8,92,25),(9,93,26),(10,94,27),(11,95,28),(12,96,29),(13,81,30),(14,82,31),(15,83,32),(16,84,17),(33,56,80),(34,57,65),(35,58,66),(36,59,67),(37,60,68),(38,61,69),(39,62,70),(40,63,71),(41,64,72),(42,49,73),(43,50,74),(44,51,75),(45,52,76),(46,53,77),(47,54,78),(48,55,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,38,9,46),(2,37,10,45),(3,36,11,44),(4,35,12,43),(5,34,13,42),(6,33,14,41),(7,48,15,40),(8,47,16,39),(17,62,25,54),(18,61,26,53),(19,60,27,52),(20,59,28,51),(21,58,29,50),(22,57,30,49),(23,56,31,64),(24,55,32,63),(65,81,73,89),(66,96,74,88),(67,95,75,87),(68,94,76,86),(69,93,77,85),(70,92,78,84),(71,91,79,83),(72,90,80,82)]])
42 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 16A | 16B | 16C | 16D | 24A | 24B | 24C | 24D | 24E | ··· | 24J | 48A | ··· | 48H |
order | 1 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 24 | 24 | 24 | 24 | 24 | ··· | 24 | 48 | ··· | 48 |
size | 1 | 1 | 2 | 2 | 4 | 2 | 24 | 72 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 24 | 24 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | + | - | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D8 | D12 | C3⋊D4 | Q32 | D24 | Dic24 | S32 | D4⋊S3 | C3⋊D12 | C3⋊Q32 | C3⋊D24 | C32⋊3Q32 |
kernel | C32⋊3Q32 | C3×C3⋊C16 | C3×Dic12 | C32⋊5Q16 | C3⋊C16 | Dic12 | C3×C12 | C24 | C3×C6 | C12 | C12 | C32 | C6 | C3 | C8 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 1 | 1 | 1 | 2 | 2 | 4 |
Matrix representation of C32⋊3Q32 ►in GL6(𝔽97)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 96 |
0 | 0 | 0 | 0 | 1 | 96 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 96 | 0 | 0 |
0 | 0 | 1 | 96 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
24 | 4 | 0 | 0 | 0 | 0 |
95 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 29 | 39 | 0 | 0 |
0 | 0 | 58 | 68 | 0 | 0 |
0 | 0 | 0 | 0 | 82 | 56 |
0 | 0 | 0 | 0 | 41 | 15 |
95 | 75 | 0 | 0 | 0 | 0 |
84 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 39 | 29 | 0 | 0 |
0 | 0 | 68 | 58 | 0 | 0 |
0 | 0 | 0 | 0 | 41 | 15 |
0 | 0 | 0 | 0 | 82 | 56 |
G:=sub<GL(6,GF(97))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,96,96],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,96,96,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[24,95,0,0,0,0,4,28,0,0,0,0,0,0,29,58,0,0,0,0,39,68,0,0,0,0,0,0,82,41,0,0,0,0,56,15],[95,84,0,0,0,0,75,2,0,0,0,0,0,0,39,68,0,0,0,0,29,58,0,0,0,0,0,0,41,82,0,0,0,0,15,56] >;
C32⋊3Q32 in GAP, Magma, Sage, TeX
C_3^2\rtimes_3Q_{32}
% in TeX
G:=Group("C3^2:3Q32");
// GroupNames label
G:=SmallGroup(288,199);
// by ID
G=gap.SmallGroup(288,199);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,85,92,254,142,675,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^16=1,d^2=c^8,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations